1. Problem
Definition
2. Development
of feasible alternatives
The
alternatives that may be adopted to arrive at a realistic estimate of arriving
at the cost of university education in 13 years’ time are;
i)
Top-down
approach
ii)
Bottom-up
approach
iii)
Regression
Analysis
3. Development
of the outcomes and cash flows for each alternative
a) Top-down approach
In this approach, we use
the historical cost of a project and
adjust for inflation, deflation, It assumed that University cost in the U.S
increases by 6% per annum.
Using the top-down
approach, the current cost of university education for our preferred university
is $14,500 / Annum. Other associated cost is about $5,000.
Totalling $19,500.00
i.e Yr 1: Future Cost(2025) = 19,500 ( 1.06)13
= 19,500 * 2.1329 = $41,592.10
Year 2 = $41,592.10 *
1.06 =$ 44,087.63
Year 3 = $44,087.63
*1.06 = $46,732.88
Year 4 =
$46,732.88*1.06 =$49,536.85
b) Bottom-Up Approach
The bottom-up requires that we breakdown anticipated
expenses into typical categories. this approach is well suited for situations
where details concrning the desired output are well defined and clear. this is
not the case here. c
c) Regression Analysis
Dependent Variable: Year
and control of institution
Independent Variable 1: All
institutions total tuition, room and board rates charged for full-time
undergraduate students in degree-granting institutions.
Independent Variable 2: Public
institutions total tuition, room and board rates charged for full-time
undergraduate students in degree-granting institutions
Independent Variable 3: Private
not-for-profit and for-profit institutions total tuition, room and board rates
charged for full-time undergraduate students in degree-granting institutions.
0.01*Indep1 + 0.00*Indep2 + 0.00*Indep3 + | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Equation Parameters | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R Squared | 0.9941 | 99.41% of the change in Dependent can be explained by the change in the 3 Independent Variables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Adjusted R Squared | 0.9918 | Adjusted for Sample Size bias | 1.27574 | Durbin-Watson Statistic | Critical D-W Values: Lower (Dl)=0.82; Upper (Du)=1.75 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard Error | 0.4639 | to +/- on result of Regression Equation | Therefore Positive Autocorrelation maybe present at 95% Confidence | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
F - Statistic | 445.9801 | Therefore analysis IS Significant | 3.58743 | Critical F-Statistic at 95% Confidence | (Significance holds to 99.9% Confidence) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Multiple Regression Equation | Independent Analysis | Auto Correlation | Tests for Multicollinearity between Independent Variables | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coefficients | Standard Error | t Stat | p Value | R Squared | Gradient | Intercept | Dl=1.08 Du=1.36 | Adjusted R-Squared against other Indep | Independent R-Square Matrix | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Intercept | 1,965.452 | 1.250 | 1,572.168 | 0.00% | DW-Stat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Indep1 | 0.006 | 0.001 | 6.457 | 0.02% | 98.32% | 0.00 | 1966.87 | 3.76 | 99.34% | 100% | 99% | 83% | 1.08 | ||||||||||||||||||||||||||||||||||||||||||||||||
Indep2 | -0.004 | 0.001 | -3.821 | 0.51% | 96.12% | 0.00 | 1968.87 | 3.22 | 99.26% | 99% | 100% | 82% | 1.36 | ||||||||||||||||||||||||||||||||||||||||||||||||
Indep3 | 0.000 | 0.000 | -0.964 | 36.32% | 81.80% | 0.00 | 1964.95 | 2.99 | 80.75% | 83% | 82% | 100% | |||||||||||||||||||||||||||||||||||||||||||||||||
Number of Periods to Forecast | 10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | Linear | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This section display the R-squared for
the multiple regression equation, show the equation’s standard error margin,
and tests the analysis for statistical significance at a 95% confidence
interval.
The adjusted R-squared is adjusted for
by the sample size and is useful when either increasing or decreasing the
number of independent variable in the analysis.
For example, when several redundant
independent variables are added, the standard R-squared may increase
marginally, however the adjusted R-squared reduces, indicating the weaker
overall relationship.
99.41% of the change in Dependent can
be explained by the change in the 3 Independent Variables.
Adjusted for Sample Size bias to +/-
on result of Regression Equation
Therefore analysis IS Significant
The
Durbin-Watson statistic
The Durbin-Watson statistic is
employed to determine if sequential (adjacent) residuals are correlated. One of
the assumptions of regression analysis is that the residuals (errors) are
independent of each other. Sometimes, however, the data set may unknowingly
contain an “order effect”, meaning that a previous measurement could influence
the outcome of the successive observations.
If the residuals are not correlated,
the Durbin-Watson statistic should be close to 2
Critical values displayed to the right
of the statistic are based on the sample and number of independent variables.
Based on the position of the Durbin-Watson statistic relative to these values,
the following assumptions can be made.
0 to D1 –
Positive Autocorrelation is detected
D1 to Du –
Positive Autocorrelation is maybe present
Du to (4-Du)
– There is No Autocorrelation
(4-Du) to
(4-D1) - Negative Autocorrelation is maybe present
(4-D1) to 4
- Negative Autocorrelation is detected
Critical D-W Values: Lower (Dl) = 0.82;
Upper (Du) = 1.75
Therefore Positive Autocorrelation
maybe present at 95% Confidence
Multiple
Regression Equation
This section summarises the individual
equation coefficient components with corresponding error margins.
The sun of these error margins will
differ to overall standard error of the equation due to the offsetting between
the components.
The t stat represents a ratio of the
estimated coefficient to its standard error. The t stat can be interpreted as a
measure of predictability of variable with higher being better.
The p value represents the probability
that the t stat can be outside of the extremities of the standard error. The p
value can be interpreted as the probability that the error margin is due to
chance rather than a real difference with lower being better.
Independent
Analysis
This section displays a simple linear
regression analysis of each of the independent variables against the dependent
variable.
The independent R-squared results
display her are useful for determining which independent variable should be
included in the analysis. Low R-squared results should be excluded. (as a rule
of thumb, below 50% indicates a weak relationship).
Dependent
= 0.01*Indep1 + 0.00*Indep2 + 0.00Indep3 + 1965.45(+/-0.46)
Y
= 0.9941x / 11.912
R2
= 0.9941
Forecast
Output
Sn
|
Indep1 ($)
|
Indep2 ($)
|
Indep3 ($)
|
Dependent
|
1
|
10620.00
|
7699.00
|
20894.00
|
1991-2000
|
2
|
13393.00
|
9390.00
|
26456.00
|
2000-2001
|
3
|
13842.00
|
9757.00
|
27261.00
|
2001-2002
|
4
|
14298.00
|
10118.00
|
22778.00
|
2002-2003
|
5
|
15086.00
|
10769.00
|
28679.00
|
2003-2004
|
6
|
15595.00
|
11153.00
|
29189.00
|
2004-2005
|
7
|
15939.00
|
11386.00
|
29307.00
|
2005-2006
|
8
|
16438.00
|
11731.00
|
30194.00
|
2006-2007
|
9
|
16617.00
|
11848.00
|
30475.00
|
2007-2008
|
10
|
17257.00
|
12375.00
|
31102.00
|
2008-2009
|
11
|
17649.00
|
12804.00
|
31023.00
|
2009-2010
|
12
|
18133.00
|
13297.00
|
31395.00
|
2010-2011
|
13
|
19061.20
|
13809.05
|
33380.53
|
2011-2012
|
14
|
19623.60
|
14237.01
|
34173.01
|
2012-2013
|
15
|
20186.00
|
14664.98
|
34965.49
|
2013-2014
|
16
|
20748.40
|
15092.95
|
35757.97
|
2014-2015
|
17
|
21310.81
|
15520.92
|
36550.45
|
2015-2016
|
18
|
21873.21
|
15948.89
|
37342.93
|
2016-2017
|
19
|
22435.61
|
16376.86
|
38135.40
|
2017-2018
|
20
|
22998.01
|
16804.83
|
38927.88
|
2018-2019
|
21
|
23560.41
|
17232.79
|
39720.36
|
2019-2020
|
22
|
24122.82
|
17660.76
|
40512.84
|
2020-2021
|
23
|
24685.22
|
18088.73
|
41305.32
|
2021-2022
|
The estimating criteria to be used to select
the preferred method of estimating is based on the level of detail we can come
up with, predicting the events that may occur regarding university education in
the U.S 13 years from now.
5. Analysis and comparison of alternatives
The Top-down approach uses historical data from
Universities on their tuition charges by modifying these data for changes in
inflation. As we have used an inflation rate of 6% yearly, the acyual rates may
be higher or lower than the 6% inflation rate figure.
Regression on the other hand allows us use
6. Selection of preferred alternative
The estimate produced from the
regression analysis will be selected and used since it has established a
relationship between the past and the future.
7.
Performance Monitoring and Post
Evaluation Results
To monitor how well results from the
regression analysis is accurate in estimating the cost of university education
in the U.S in 13 years time, I will compare results from my yearly predictions
against the actual cost of university education on a yearly basis.
References
Sullivan, W., Wicks, E., Koelling, P., Kumar, p., & Kumar,
N. (2012). Engineering economy (15th
edition). England: Pearson Education
Limited
U.S.
Department of Education, National Center for Education Statistics. (2012). Digest
of Education Statistics, 2011 (NCES 2012-001), Retrieved from http://nces.ed.gov/fastfacts/display.asp?id=76
ALMOST AWESOME, Rotimi...... You would have gotten an AWESOME had you provided the minimum of three references, as the specifications require...
ReplyDeleteYou followed our step by step process very well and the two references you cited were done well.
For your W5 posting, what you could do is take the same case study (which is a very good one!!) but this time, turn it into ounces of gold equivalence and using gold, project the costs into the future.
BR,
Dr. PDG, Jakarta